Close this search box.

Table of Contents

Model Risk


Model Risk refers to the potential for different modeling approaches to lead to different estimates of the same concept or quantity. It poses a problem when it impacts financial decisions, potentially leading to financial losses. It is the risk of inaccuracy in models used to measure or predict economic variables, prices, or risk.


The phonetic pronunciation for “Model Risk” is: “mah-dl risk”

Key Takeaways

<ol> <li>Model Risk Refers to Inaccuracies: Model risk refers to the potential for different types of financial models to produce inaccurate results. This is due to errors, inaccuracies, or misuse of models in financial decision-making processes. Inaccuracies in financial models can potentially lead to significant financial loss and damage to an organization’s reputation.</li> <li>Managing Model Risk is Crucive: Effective assessment, management, and mitigation of model risk is crucial in financial institutions. This typically involves strong validation frameworks, constant monitoring and periodic review of models, and taking into account the possibility of model risk while making risk management decisions.</li> <li>Regulatory challenge: Model risk management has become a key concern for regulatory authorities following the financial crisis of 2008, where a lack of proper model risk control was one of the factors that led to the crisis. Regulations are increasingly focusing on effective model risk management to prevent future financial instabilities.</li></ol>


Model risk is an essential term in business and finance as it pertains to the potential for adverse consequences from decisions based on incorrect or misused model outputs and calculations. These outcomes could include significant financial losses and damage to a firm’s reputation. In a world where decision-making is increasingly reliant on complex algorithms and models, the risk that these models may have errors or may be used incorrectly is a critical concern. Addressing model risk involves robust model validation, monitoring, and assessments to ensure that models perform as expected, even in extreme market conditions. Therefore, a comprehensive understanding and management of model risk play a fundamental role in avoiding disastrous financial and business decisions based on flawed or improperly used models.


Model risk is a type of risk that occurs when a financial model used to quantify a firm’s market risks or value transactions fails or performs inadequately. The purpose of recognizing model risk is to determine the potential adverse implications of a financial model in calculating the inherent risk or value. Typically, these models are algorithms or systems set up to evaluate the market conditions, portfolio investments, and economic situations. When these models don’t work as expected, the associated model risk can lead to significant financial loss and poor business decisions.The primary use of understanding and calculating model risk is to prevent financial misjudgment. By knowing the scope of model risk, businesses can take steps to improve their models, adjust their risk tolerance or adapt other decision-making procedures to compensate for the risk. Furthermore, addressing model risk is an essential part of a firm’s risk management strategy. It is aimed at ensuring the accuracy and robustness of models, thereby allowing firms to make informed, data-driven decisions. Regulatory bodies also use the concept of model risk as a criterion for examining the operational and financial stability of financial organizations.


1. Long Term Capital Management (LTCM) Crisis: LTCM was a hedge fund that made extensive use of financial models to execute market arbitrage strategies. However, their model did not adequately account for the possibility of significant financial crises or the liquidity risk they could face as a result of such crises. In the late 1990s, when Russia defaulted on its government debt and global financial markets became highly volatile, LTCM’s model failed, leading to a crisis that threatened to destabilize the global financial system.2. Mortgage-backed Securities and the 2008 Financial Crisis: Before the 2008 financial crisis, many financial institutions used models that undervalued the risk of mortgage-backed securities. The models proved to be disastrously wrong, failing to predict high default rates on subprime mortgages, leading to huge losses for financial institutions and ultimately contributing to a global financial crisis.3. Value-At-Risk (VaR) Models: VaR models are used by banks and other financial institutions to measure and control risk. They attempt to estimate the most a portfolio is likely to lose over a certain period, under normal market conditions. However, VaR models have been criticized for their failure to accurately predict losses during financial downturns. For example, in 2008, many institutions found that their losses far exceeded what their VaR models had predicted, highlighting the model risk inherent in relying on these tools.

Frequently Asked Questions(FAQ)

What is Model Risk?

Model Risk is the potential for different modeling approaches to produce varying outputs in risk measurement. It often arises due to incorrect assumptions, errors in the data, or misuse of models.

What are the potential consequences of model risk?

The consequences of Model Risk can be significant and might include financial losses, inaccurate business decisions, and damage to a company’s reputation.

What is an example of model risk?

An example could be a financial institution underestimating the risk of default of a loan portfolio due to erroneous calculation in their risk-assessment model, leading to potential financial losses.

How can model risk be managed?

Model Risk can be managed by using well-calibrated models, validated by independent teams, and by performing periodic back-testing to identify potential errors. The use of multiple models for obtaining various viewpoints is another common method used.

Does model risk only apply to financial models?

No, model risk can apply to any models used in making predictions, estimates, or decision-making, whether they are applied in finance, engineering, meteorology, or other fields.

What is model risk management (MRM)?

Model Risk Management (MRM) is a set of practices intended to identify, assess, mitigate, and monitor model risk. This typically involves robust governance and control and includes independent model validation and regular performance review.

What roles are typically involved in managing model risk in a financial institution?

Roles typically involved would include ‘risk managers’ for identifying and assessing risk, ‘quantitative analysts’ for model development, the ‘model validation team’ for independent verification, and ‘compliance & audit functions’ for ensuring regulatory adherence.

Is there any regulatory guidance in place for model risk management?

Yes, several regulatory bodies such as the Federal Reserve and the Office of the Comptroller of the Currency in the United States have issued guidance on managing model risk, including SR 11-7, which provides comprehensive principles for a strong model risk management framework.

How is technology used in managing model risk?

Technology is used in a variety of ways to manage model risk, including automated model validation tools, ongoing performance monitoring software, and data analysis tools used to verify the accuracy and reliability of data inputs.

: Are there any particular models that pose a larger model risk than others?

Generally, the complexity of a model is directly proportional to the model risk. Therefore, complex financial models such as those used for risk management, derivative pricing, and algorithmic trading can carry substantial model risk if not appropriately managed.

Related Finance Terms

  • Model Validation: The process of reviewing and testing statistical models created by financial institutions for their accuracy and soundness.
  • Model Overfitting: A modeling error that happens when a model is made too complex and becomes fitted excessively to the training data, causing it to perform poorly on new data.
  • Backtesting: Using data on past events to determine how a financial model would have performed, in an effort to validate or improve the model.
  • Quantitative Analysis: The use of mathematical and statistical methods and models for understanding and predicting behaviors in financial markets.
  • Stress Testing: A risk management method used to evaluate the potential effects of unfavorable economic scenarios on business models to ensure their robustness and resilience.

Sources for More Information

About Our Editorial Process

At Due, we are dedicated to providing simple money and retirement advice that can make a big impact in your life. Our team closely follows market shifts and deeply understands how to build REAL wealth. All of our articles undergo thorough editing and review by financial experts, ensuring you get reliable and credible money advice.

We partner with leading publications, such as Nasdaq, The Globe and Mail, Entrepreneur, and more, to provide insights on retirement, current markets, and more.

We also host a financial glossary of over 7000 money/investing terms to help you learn more about how to take control of your finances.

View our editorial process

About Our Journalists

Our journalists are not just trusted, certified financial advisers. They are experienced and leading influencers in the financial realm, trusted by millions to provide advice about money. We handpick the best of the best, so you get advice from real experts. Our goal is to educate and inform, NOT to be a ‘stock-picker’ or ‘market-caller.’ 

Why listen to what we have to say?

While Due does not know how to predict the market in the short-term, our team of experts DOES know how you can make smart financial decisions to plan for retirement in the long-term.

View our expert review board

About Due

Due makes it easier to retire on your terms. We give you a realistic view on exactly where you’re at financially so when you retire you know how much money you’ll get each month. Get started today.

Due Fact-Checking Standards and Processes

To ensure we’re putting out the highest content standards, we sought out the help of certified financial experts and accredited individuals to verify our advice. We also rely on them for the most up to date information and data to make sure our in-depth research has the facts right, for today… Not yesterday. Our financial expert review board allows our readers to not only trust the information they are reading but to act on it as well. Most of our authors are CFP (Certified Financial Planners) or CRPC (Chartered Retirement Planning Counselor) certified and all have college degrees. Learn more about annuities, retirement advice and take the correct steps towards financial freedom and knowing exactly where you stand today. Learn everything about our top-notch financial expert reviews below… Learn More