Search
Close this search box.

Table of Contents

Autoregressive Integrated Moving Average (ARIMA)



Definition

The Autoregressive Integrated Moving Average (ARIMA) is a statistical analysis model used for understanding and forecasting future points in time series data. It works by combining autoregressions, differencing to remove trend and seasonality and a moving average. It’s regarded as a standard form of time series forecasting, often used in areas such as stock market analysis or economic forecasting.

Phonetic

The phonetics of “Autoregressive Integrated Moving Average (ARIMA)” is:- Autoregressive: /ˌɔtoʊrɪˈgrɛsɪv/- Integrated: /ˈɪntɪˌgreɪtɪd/- Moving: /ˈmuːvɪŋ/- Average: /ˈævərɪdʒ/- ARIMA: /əˈriːmə/

Key Takeaways

  1. Autoregressive Integrated Moving Average (ARIMA) is a popular forecasting model that utilizes the methods of autoregression, differencing, and moving averages to predict future data points. It’s particularly useful for data with trends and non-seasonal characteristics.
  2. The parameters in ARIMA’s title express its key characteristics: ‘AutoRegressive’ means it’s a linear regression model that uses its own lagged values as predictors, ‘Integrated’ refers to differencing to make the time series stationary, and ‘Moving Average’ indicates the dependency between an observation and a residual error from a moving average model applied to lagged observations.
  3. Choosing the appropriate ARIMA model requires determining the parameters (p, d, q) that provide the best fit to your data. Auto ARIMA is commonly used for this purpose, but visual tools like Autocorrelation and Partial Autocorrelation plots, as well as statistical tests like Augmented Dickey-Fuller test, are also useful methods to fine tune this model.

Importance

The Autoregressive Integrated Moving Average (ARIMA) is a significant term in business and finance because it is a powerful forecasting method for time series data that can predict future values based on its own past values. This model encompasses components of Autoregression (AR), Differencing (I) and Moving Average (MA) to analyze and predict data points. It is capable of capturing a suite of different standard temporal structures in the data, which makes it versatile and more effective in financial forecasting. Accurate forecasts can help businesses predict market trends and make strategic decisions, substantiating the importance of ARIMA in the business and finance sector.

Explanation

The Autoregressive Integrated Moving Average (ARIMA) is a key tool used in statistical forecasting of time series data, often applied in finance and business contexts. Its main function is to analyze and project future values in a series, presenting it as a linear function of different lagged values and residual errors from previous forecasts. This assists in deciphering patterns in unpredictable data points in the past to predict future trends, making it particularly useful in financial markets where it may be applied to forecast stocks or other investments.ARIMA encompasses elements of autoregressive (AR), differencing (I), and moving average (MA) processes, which assists in handling trends, seasonality, irregular cycles, and other complex patterns we may encounter in time series data. AR components are used for factoring the momentum and drift, MA components are used for capturing the shocks and volatility, and I components are used for purging the data of its trends. All these components working together enable ARIMA to model a broad range of sequential time data. As a result, ARIMA is widely used in varied areas such as sales forecasting, macroeconomic analysis, and stock market analysis, among others.

Examples

1. Stock Price Forecasting: Investment firms and financial analysts often use ARIMA models to predict future stock prices. Through historical data analysis, the ARIMA model identifies patterns and trends, providing a probable future price for specific stocks. This can guide decisions about when to buy, sell, or hold certain securities. 2. Sales Forecasting: Companies in the retail sector often apply ARIMA models to predict future sales. By analyzing past sales data, these models can forecast potential sales trends and periods of increased activity, which is crucial for inventory management, marketing strategies, budgeting, and planning. 3. Economic Forecasting: Government bodies and financial institutions employ ARIMA models to predict key economic variables such as GDP growth, unemployment rates, inflation, and interest rates. This helps policymakers to devise strategies that stimulate or regulate the economy based on projected scenarios. Remember, while ARIMA models are useful for making predictions based on past trends, they cannot account for unexpected events or variables not included in the model. They are tools to assist in decision-making, but should not be solely relied upon.

Frequently Asked Questions(FAQ)

What is ARIMA (Autoregressive Integrated Moving Average)?
ARIMA is a powerful forecasting method that utilizes historical data. It was specifically designed to predict future points in a series of data, such as sales, stock prices, or weather patterns. It functions by understanding and characterizing the patterns observed in time series data and predicting similar patterns in the future.
Where is ARIMA applied?
The ARIMA method is commonly used in finance and economics for forecasting future values of time series data such as currency exchange rates, company’s sales, stock prices, macroeconomic variables such as unemployment rates, GDP growth, inflation etc.
What does the term autoregressive mean in ARIMA?
In ARIMA, autoregressive refers to a model where the current value of a time series is related to its previous values. It implies that the future value of a variable is a function of its past values.
What does the term integrated mean in ARIMA?
The integrated part of ARIMA refers to the use of differencing to remove the series trend or seasonality. The goal is to make the series stationary- ensuring that the data operates around a constant mean.
What does the term moving average mean in ARIMA?
The moving average aspect in ARIMA refers to a model where the future value of a variable is a function of its past errors or deviations from the mean.
Can ARIMA be used for both univariate and multivariate time series data?
The standard ARIMA is intended for univariate time series data with no independent variables. However, variations of the ARIMA model can incorporate multivariate time series data.
How do you define the ARIMA model?
The ARIMA model is described using three parameters: (p, d, q), where ‘p’ is the number of autoregressive terms, ‘d’ is the number of nonseasonal differences needed for stationarity, and ‘q’ is the number of lagged forecast errors in the prediction equation.
What are the limitations of ARIMA models?
Though versatile, ARIMA models have limitations including the assumption of linearity, the requirement of data to be stationary, and it can’t effectively model the volatility in financial markets, such as stock prices, which can have sudden jumps or falls.
How do you check the accuracy of ARIMA models?
The accuracy of ARIMA models can be determined using some statistical measures such as the Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and others.

Related Finance Terms

Sources for More Information


About Our Editorial Process

At Due, we are dedicated to providing simple money and retirement advice that can make a big impact in your life. Our team closely follows market shifts and deeply understands how to build REAL wealth. All of our articles undergo thorough editing and review by financial experts, ensuring you get reliable and credible money advice.

We partner with leading publications, such as Nasdaq, The Globe and Mail, Entrepreneur, and more, to provide insights on retirement, current markets, and more.

We also host a financial glossary of over 7000 money/investing terms to help you learn more about how to take control of your finances.

View our editorial process

About Our Journalists

Our journalists are not just trusted, certified financial advisers. They are experienced and leading influencers in the financial realm, trusted by millions to provide advice about money. We handpick the best of the best, so you get advice from real experts. Our goal is to educate and inform, NOT to be a ‘stock-picker’ or ‘market-caller.’ 

Why listen to what we have to say?

While Due does not know how to predict the market in the short-term, our team of experts DOES know how you can make smart financial decisions to plan for retirement in the long-term.

View our expert review board

About Due

Due makes it easier to retire on your terms. We give you a realistic view on exactly where you’re at financially so when you retire you know how much money you’ll get each month. Get started today.

Due Fact-Checking Standards and Processes

To ensure we’re putting out the highest content standards, we sought out the help of certified financial experts and accredited individuals to verify our advice. We also rely on them for the most up to date information and data to make sure our in-depth research has the facts right, for today… Not yesterday. Our financial expert review board allows our readers to not only trust the information they are reading but to act on it as well. Most of our authors are CFP (Certified Financial Planners) or CRPC (Chartered Retirement Planning Counselor) certified and all have college degrees. Learn more about annuities, retirement advice and take the correct steps towards financial freedom and knowing exactly where you stand today. Learn everything about our top-notch financial expert reviews below… Learn More